A Netskope foi reconhecida como líder novamente no Quadrante Mágico do Gartner®™ para plataformas SASE. Obtenha o relatório

fechar
fechar
Sua Rede do Amanhã
Sua Rede do Amanhã
Planeje seu caminho rumo a uma rede mais rápida, segura e resiliente projetada para os aplicativos e usuários aos quais você oferece suporte.
          Experimente a Netskope
          Coloque a mão na massa com a plataforma Netskope
          Esta é a sua chance de experimentar a plataforma de nuvem única do Netskope One em primeira mão. Inscreva-se em laboratórios práticos e individualizados, junte-se a nós para demonstrações mensais de produtos ao vivo, faça um test drive gratuito do Netskope Private Access ou participe de workshops ao vivo conduzidos por instrutores.
            Líder em SSE. Agora é líder em SASE de fornecedor único.
            A Netskope é reconhecida como a líder mais avançada em visão para as plataformas SSE e SASE
            2X é líder no Quadrante Mágico do Gartner® para plataformas SASE
            Uma plataforma unificada criada para sua jornada
              Protegendo a IA generativa para leigos
              Protegendo a IA generativa para leigos
              Saiba como sua organização pode equilibrar o potencial inovador da IA generativa com práticas robustas de segurança de dados.
                E-book moderno sobre prevenção de perda de dados (DLP) para leigos
                Prevenção Contra Perda de Dados (DLP) Moderna para Leigos
                Obtenha dicas e truques para fazer a transição para um DLP fornecido na nuvem.
                  Livro SD-WAN moderno para SASE Dummies
                  SD-WAN moderno para leigos em SASE
                  Pare de brincar com sua arquitetura de rede
                    Compreendendo onde estão os riscos
                    O Advanced Analytics transforma a maneira como as equipes de operações de segurança aplicam insights orientados por dados para implementar políticas melhores. Com o Advanced Analytics, o senhor pode identificar tendências, concentrar-se em áreas de preocupação e usar os dados para tomar medidas.
                        Suporte Técnico Netskope
                        Suporte Técnico Netskope
                        Nossos engenheiros de suporte qualificados estão localizados em todo o mundo e têm diversas experiências em segurança de nuvem, rede, virtualização, fornecimento de conteúdo e desenvolvimento de software, garantindo assistência técnica de qualidade e em tempo hábil.
                          Vídeo da Netskope
                          Treinamento Netskope
                          Os treinamentos da Netskope vão ajudar você a ser um especialista em segurança na nuvem. Conte conosco para ajudá-lo a proteger a sua jornada de transformação digital e aproveitar ao máximo as suas aplicações na nuvem, na web e privadas.

                            Insider Threats Packing Their Bags With Corporate Data

                            May 11 2023

                            Introduction

                            The insider story, whether it is a disgruntled or negligent employee, is one that is familiar to many organizations. The 2020 Securonix Insider Threat Report found that 60% of the insider threat cases they dealt with involved a “flight risk” employee, or an individual that is getting ready to leave their employment. In today’s cyber ecosystem identifying these threats has become more important than ever, since more organizations are responsible for personally identifiable information (PII) and intellectual property (IP) than ever before. Since every organization is likely responsible for sensitive data and has these “flight risk” users, a strategy for addressing insider threats is necessary.

                            In this blog, we will summarize a study we conducted on 58,314 people that left their employment, the behaviors they exhibited before leaving, and the nature of the data they attempted to take with them. Furthermore, we will outline some techniques you can use in your own environment to find similar cases of data exfiltration via cloud apps.

                            We found that the last 50 days of employment is when a majority of the data movement occurs.

                            The analysis presented in this blog post is based on anonymized usage data collected by the Netskope Security Cloud platform relating to a subset of Netskope customers with prior authorization.

                            Scope

                            Insider threat can mean a vast array of things, but for the sake of scoping this research, when we say insider, we mean an individual that has exfiltrated sensitive corporate data using cloud apps, where sensitive data is defined as data that could hurt an organization if it were to be leaked to the public or a competitor. 

                            We are not focused on insiders doing any of the following:

                            • Using a USB drive to move data
                            • Printing out documents and walking out of the building with them
                            • Taking pictures of a monitor with their phones

                            Overview of our approach

                            Our approach to addressing this threat can be broken down into three elements:

                            1. Having the correct architecture to monitor cloud traffic
                            2. Applying labels to the data being moved
                            3. Analyzing the data for anomalous behavior 

                            Architecture

                            Architecture to monitor cloud traffic

                            To successfully identify data movement to the cloud from the corporate environment, we monitor both inline forward proxy logs and API audit logs. The inline forward proxy logs are able to identify data movement to managed and unmanaged cloud applications. And the audit logs identify access from managed and unmanaged devices. All of this information is then anonymized and analyzed for anomalies. 

                            Applying labels

                            The cloud traffic needs to be labeled via two mechanisms so we can gain the most insight from the logs.

                            Applying Instance Labels

                            We apply instance labels by looking at the application itself, the name of the instance extracted by the proxy, and the domain of the username used to log into the application. For example, a user named John working at Acme uses Google Gmail for personal correspondence, and Acme provides him a Google Gmail account for business correspondence. We consider these two instances of the same app; John’s personal instance and the Acme organization instance.

                            ApplicationDomainLabel
                            Google Driveacme.comBusiness
                            Google Drivegmail.comPersonal
                            Google Drivefoobar.comUnknown

                            Applying Data Labels

                            To apply data labels, the files in the traffic are sent to the DLP module to ensure compliance with organization-configured DLP policies. When files that violate the policies set by the organization are moved, an alert is raised.

                            When these labels are applied to the data, the result looks something like the following:

                            UserAppApp Instance labelActivityFile NameDLP Violation
                            [email protected]Google Drivepersonaluploadblack_project.docxSecret project code names

                            Anomaly Detection

                            All of the above events are then sent to an anomaly detection component that identifies unusual deviations from the individuals’ baseline behavior. This behavior is focused on data movement anomalies that violate corporate DLP policy.

                            Anomaly detection looks for spikes in activities that are different from the user’s baseline behavior. For example, if a user usually uploads under 2 MB to their personal applications but suddenly uploads 2 TB to their personal Google Drive in one day, this would be anomalous behavior.

                            The key to accurately detecting insider threats exfiltrating data to cloud apps is to have all three components, instance labels, data labels, and anomaly detection. Omitting one or more of these components results in a significant decrease in detection efficacy. 

                            Data Exfiltration

                            15% of the “flight risk” employees moved data to personal cloud applications, but only 2% of the “flight risk” employees violated corporate policies.

                            The 2% of “flight risks” that violated corporate policies moved:

                            • 94% of the files in the last 91 days
                            • 84% of the files in the last 49 days
                            • 74% of the files in the last 28 days
                            • 49% of the files in the last 14 days

                            So, if you were to monitor the last 14 days of employment, you may detect about half of the files being exfiltrated. In order to catch the full 2% of users, you would need proactive analysis for a longer period. 

                            Conclusion

                            In this blog, we reviewed the insights we gathered by looking at more than 58k users that left their employment. We saw that about 2% of individuals that leave their employment mishandle corporate data before leaving. While 2% might not seem like a lot, the data that these individuals target ends up being about 70% IP and PII. To mitigate this, we need to:

                            • Understand that 2% of “flight risks” take sensitive data with them
                            • And that 75% of data is uploaded in the last 50 days, before the typical 14 day notice
                            • But by monitoring the nature, volume, and direction of data moved we are able to detect these cases

                            If you enjoyed the insights from this blog post, keep up with the latest from Netskope Threat Labs here.  

                            author image
                            Dagmawi Mulugeta
                            Dagmawi Mulugeta is a security researcher with interests in cloud security, incident analysis & prediction, exploit development, and large-scale data analysis.
                            Dagmawi Mulugeta is a security researcher with interests in cloud security, incident analysis & prediction, exploit development, and large-scale data analysis.
                            author image
                            Colin Estep
                            Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's a researcher at Netskope, where he focuses on security for AWS and GCP.
                            Colin Estep has 16 years of experience in software, with 11 years focused on information security. He's a researcher at Netskope, where he focuses on security for AWS and GCP.
                            Conecte-se com a Netskope

                            Subscribe to the Netskope Blog

                            Sign up to receive a roundup of the latest Netskope content delivered directly in your inbox every month.